Homeomorphically Irreducible Spanning Trees in Locally Connected Graphs
نویسندگان
چکیده
A spanning tree T of a graph G is called a homeomorphically irreducible spanning tree (HIST) if T does not contain vertices of degree 2. A graph G is called locally connected if for every vertex v ∈ V (G), the subgraph induced by the neighborhood of v is connected. In this paper, we prove that every connected and locally connected graph with more than 3 vertices contains a HIST. Consequently, we confirm the following conjecture due to Archdeacon: every graph that triangulates some surface has a HIST, which was proposed as a question by Albertson, Berman, Hutchinson, and Thomassen.
منابع مشابه
Homeomorphically Irreducible Spanning Trees, Halin Graphs, and Long Cycles in 3-connected Graphs with Bounded Maximum Degrees
A tree T with no vertex of degree 2 is called a homeomorphically irreducible tree (HIT) and if T is spanning in a graph, then T is called a homeomorphically irreducible spanning tree (HIST). Albertson, Berman, Hutchinson and Thomassen asked if every triangulation of at least 4 vertices has a HIST and if every connected graph with each edge in at least two triangles contains a HIST. These two qu...
متن کاملA characterization of P5-free graphs with a homeomorphically irreducible spanning tree
A spanning tree with no vertices of degree two is called a homeomorphically irreducible spanning tree (or a HIST ) of a graph. In [7], sets of forbidden subgraphs that imply the existence of a HIST in a connected graph of sufficiently large order were characterized. In this paper, we focus on characterizing connected P5-free graphs which have a HIST. As applications of our main result, we also ...
متن کاملHomeomorphically irreducible spanning trees
We show that if G is a graph such that every edge is in at least two triangles, then G contains a spanning tree with no vertex of degree 2 (a homeomorphically irreducible spanning tree). This result was originally asked in a question format by Albertson, Berman, Hutchinson, and Thomassen in 1979, and then conjectured to be true by Archdeacon in 2009. MSC2010 : 05C05, 05C75
متن کاملThe structure and labelled enumeration of K_{3,3}-subdivision-free projective-planar graphs
We consider the class F of 2-connected non-planar K3,3-subdivision-free graphs that are embeddable in the projective plane. We show that these graphs admit a unique decomposition as a graph K5 (the core) where the edges are replaced by two-pole networks constructed from 2-connected planar graphs. A method to enumerate these graphs in the labelled case is described. Moreover, we enumerate the ho...
متن کاملCounting Labelled Projective-planar Graphs without a K 3,3 -subdivision *
We consider the class F of labelled 2-connected non-planar graphs without a K3,3-subdivision that are embeddable in the projective plane. A method of enumerating these graphs is described. We also enumerate the homeomorphically irreducible graphs in F and homeomorphically irreducible 2-connected planar graphs. The methods are based on the projective-planarity characterization for graphs without...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Combinatorics, Probability & Computing
دوره 21 شماره
صفحات -
تاریخ انتشار 2012